

Progress Report

Transition of the Coastal and Estuarine Storm Tide Model (CEST) to an Operational Model for Forecasting Storm Surges

Yuepeng Li, Yi-Cheng Teng, & Keqi Zhang

March 15, 2016

Acknowledgments

- The Joint Hurricane Testbed Program of NHC for supporting the project
- The storm surge unit of NHC
- The Meteorological Development Laboratory of National Weather Service

Outlines

- Introduction
- Convert SLOSH Basins into CEST Grids
- MOM (Maximum of the Maximum) Comparison
- MEOW (Maximum Envelope of Water) Comparison
- Conclusions
- Future Work

Comparison of SLOSH and CEST

Items	SLOSH	CEST		
Numerical method	Finite difference	Finite difference		
Numerical scheme	Explicit	Semi-implicit		
Grid format	Conformal grid	Orthogonal curvilinear		
Grid style	B-grid	Modified C-grid		
Overland flooding	Wetting and drying based on the relationship between water flows and water level elevations of neighboring cells	Wetting and drying based on accumulated water volume in a grid cell to conserve water volume		
Wind field	SLOSH Wind	SLOSH , Holland wind, H*Wind		
Bottom friction	Function of total water depth	Function of water depth and type of land cover		
Time step for synthetic cases	3-15 seconds	15-60 seconds		

Testing CEST on existing and recently updated SLOSH basins

SLOSH Basins

DTA Files

Shape files

- Grid
- Height
- Barrier
- Flow
- Cut
- Tree

Synthetic storm track Files

- Category, forward speed, trajectory, and initial tide level

Outlines

- Introductions
- Convert SLOSH Basins into CEST Grids
- MOMs (Maximum of the Maximum) Comparison
- MEOWs (Maximum Envelope of Water) Comparison
- Conclusions
- Future Works

Convert SLOSH Basin into CEST Grid

- Grid Coordinate
- Cell Center Depth
- Edge Depth
- Barrier Depth
- Cut Depth
- ♦ Tree Flag

Manning's Coefficients (For model bottom stress)

Manning's Coefficients

 In CEST, Manning coefficients for grid cells over the land were estimated according to the 2011 NLCD. Then an average Manning coefficient for a land grid cell is calculated using:

$$n_a = \frac{\sum_{i=1}^{N} (n_i \alpha) + n_0 \beta}{N\alpha + \beta}$$

n: Manning coefficient value of an NLCD pixel within a model grid cell;

 α : the area of an NLCD pixel;

N: the total number of NLCD pixels within a model cell;

*n*₀: the Manning coefficient for the oceanic area;

 β : Oceanic area that is not covered by NLCD pixel.

References:

- Zhang, K., H. Liu, Y. Li, H. Xu, J. Shen, J. Rhome, and T. J. Smith III, 2012: The role of mangroves in attenuating storm surges. *Estuarine, Coastal, and Shelf Science*, **102-103**, 11-23.
- Zhang, K., Y. Li, H. Liu, J. Rhome, and C. Forbes, 2013: Transition of the Coastal and Estuarine Storm Tide Model into an operational storm surge forecast model: A case study of the Florida Coast. Weather and Forecasting, 28, 1019-1037.

Manning's Coefficients Calculated from National Land Cover Data

Manning n w/o NLCD

Manning n w/ NLCD

Land Cover Image

11 Basins have been converted

Basins	Name	Tracks	NLCD	
Apalachicola Bay	AP3	YES	YES	
Cedar Key	CD2	YES	YES	
Cape Canaveral	CO2	YES	YES	
Delaware Bay	DE3	YES	YES	
Fort Myers	FM2	YES	YES	
Florida Bay	GL3	YES	YES	
Biscayne Bay	HMI3	YES	YES	
Mobile Bay	MO2	YES	YES	
New Orleans	MS7	YES	YES	
Tampa Bay	TP3	YES	YES	
Norfolk	OR3	YES	YES	

Outlines

- Introduction
- Convert SLOSH Basins into CEST Grids
- MOM (Maximum of the Maximum) Comparison
- MEOW (Maximum Envelope of Water) Comparison
- Conclusions
- Future Work

Comparison of Category 3 MOMs by SLOSH and CEST

Comparison of Category 5 MOMs by SLOSH and CEST

Comparison of Maximum MOMs By SLOSH and CEST

MOMs	SLOSH	CEST	SLOSH	CEST	
	(mean)	(mean)	(high)	(high)	
Tropical Storm(ft)	6	5	7	6	
Category 1(ft)	9	8	10	9	
Category 2(ft)	16	16	17	17	
Category 3(ft)	24	24	25	25	
Category 4(ft)	30	29	31	30	
Category 5(ft)	35	35	35	36	

Comparison of Inundation Area By SLOSH and CEST

MOMs	SLOSH	CEST	SLOSH	CEST	
	(mean)	(mean)	(high)	(high)	
Tropical Storm(km²)	979	423	1387	660	
Category 1(km ²)	1472	742	1785	925	
Category 2(km ²)	2544	1774	2771	1989	
Category 3(km ²)	3911	2641	4210	2776	
Category 4(km ²)	5217	3373	5447	3526	
Category 5(km ²)	6467	4091	6628	4291	

Cross Section along Coastal line

Maximum Surge of Category 3 MOM and Depth Profiles

Maximum Surge of Category 3 MOM and Depth Profiles – Zoom In

Outlines

- Introduction
- Convert SLOSH Basins into CEST Grids
- MOM (Maximum of the Maximum) Comparison
- MEOW (Maximum Envelope of Water) Comparison
- Conclusions
- Future Work

The MEOWs of e405 at mean tide (Direction=East, Category=4, Moving speed=5 mph)

The MEOWs of a405 at mean tide (Direction=North-West, Category=4, Moving speed=5 mph)

The MEOWs of n405 at mean tide (Direction=North, Category=4, Moving speed=5 mph)

The MEOWs of w405 at mean tide (Direction=West, Category=4, Moving speed=5 mph)

Comparison of Maximum MEOWs by Category 4 hurricanes with Moving Speed of 5 mph at Mean Tide

MEOWs	SLOSH (ft)	CEST (ft)	
East direct (e)	20	21	
East-North-East direct (i)	21	22	
North direct (n)	26	25	
North-East direct (b)	21	23	
North-North-East direct (c)	24	24	
North-North-West (f)	26	25	
North-West direct (a)	25	24	
West direct (w)	20	22	
West-North-East (d)	24	24	

Conclusions

- CEST can run on the SLOSH Basins robustly and efficiently.
- MOMs and MEOWs comparisons indicated that CEST generated similar surge patterns and peak surges at most cases.
- Inundation area comparisons showed that CEST produced smaller inundation extent on the land even the magnitude of maximum surges is similar.

Future Work

- Continuing to convert all SLOSH basins into CEST grid;
- Replicating current operational capabilities (i.e. creation of MOMs, MEOWS, and ensemble runs);
- Examining the different inundation patterns of MOMs and MEOWs produced by CEST and SLOSH;
- Developing a prototype of CEST P-Surge.

Time Line

Tasks	Q3 (2015)	Q4	Q1 (2016)	Q2	Q3	Q4	Q1 (2017)	Q2
Task 1: Testing CEST on existing and recently developed SLOSH basins				Report on testing result				
Task 2: Developing CEST P- Surge				Initial report on P-Surge				Final report on P-Surge
Task 3: Conducting real-time surge forecasting during hurricane seasons	Surge maps and analysis	Surge maps and analysis			Surge maps and analysis	Surge maps and analysis		
Task 4: Porting CEST to NHC forecast environment				CEST code, initial set up and training documents				Final set up and training documents and Project report

Thanks Questions?